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1 INTRODUCTION 

The term "stability" refers to that property which ensures that the power sys­

tem will remain in operating equilibrium under normal and abnormal operating 

conditions. Power system stability has become an area of concern as power sys­

tems over large geographic areas have been interconnected and power systems have 

grown in size and have become more complex. Over the last two decades, con­

siderable research effort has gone into the stability investigation of power systems, 

especially after the famous blackout in Northeast U.S.A. in 1965. With the ever 

increasing demand for electrical energy and dependence on an uninterrupted sup­

ply, the associated requirement of high reliability dictates that power systems be 

designed to maintain stability under specific disturbances. The first requirement 

of reliable service is to keep the synchronous generators running in parallel and 

with adequate capacity to meet the load demand. A second requirement of reliable 

electrical service is to maintain the integrity of the power network. 

Transient stability studies are concerned with the stability characteristics of the 

electric power system under large disturbances, which may be a sudden change in 

load, or a sudden change in reactances of the system caused, for instance, by a line 

outage or a fault. The nature and magnitude of these disturbances greatly affect 

the stability of the system. A power system is transiently stable for a particular 
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steady-state operating condition and for a particular disturbance if, following that 

disturbance, it reaches an acceptable steady-state operating condition. 

1.1 Need for Direct Methods of Transient Stability Analysis 

Transient stability studies are conducted on power systems to analyze the effect 

of large disturbances. One of the important objectives of such studies is to eval­

uate the ability of power systems to withstand contingencies for decision making, 

which range from minute-to-minute operations to planning decisions for the future. 

This involves ascertaining whether the existing or planned switchgear and network 

arrangements are adequate for the system to withstand a prescribed set of distur­

bances without loss of synchronism being encountered. Another emerging need of 

power system operation deals with obtaining the stability limits for various planned 

or forced equipment outages under changing operating conditions. These stability 

limits of interest can, for instance, be in terms of power generation of an economic 

unit or power transfer across certain critical interfaces of the transmission system. 

Given these safe limits, the system operator, would take necessary actions to remain 

within these limits to avoid any stability crisis. Fast computation of stability limits 

thus requires a dependable analytical technique, which should be fast enough to 

provide answers in or near real-time. 

The conventional method to analyze transient stability is to obtain a time 

solution of the equations describing the power system. These equations consist of 

a set of differential and algebraic equations, which are usually solved by a digital 

computer simulation. These simulations suffer from two main drawbacks. Firstly, 

time simulations consume enormous computing resources and engineering time, and, 
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secondly, they do not provide a qualitative measure of the degree of stability of the 

power system. 

Direct methods on the other hand, offer alternative methods which are aimed 

at relaxing the technical and economical burdens associated with the time solu­

tion approach. In addition, direct methods provide information regarding relative 

degree of stability of different operating configuration for a system. For system 

operation with forced outage of lines, these methods can provide stable operating 

regimes in near real time. In operations planning, these methods identify prob­

lem contingencies and define safe regimes at a reduced cost. In system planning, 

these methods are useful in weighting alternative expansion plans, according to the 

relative network strength to withstand contingencies. 

It is because of these technical and economical reasons that the need for the 

direct methods of transient stability assessment arose. The direct methods in turn 

should predict transient stability (or instability) of a power system reliably, when 

subjected to a given disturbance, and provide a quick assessment of transient sta­

bility at a reduced cost. 

The direct stability analysis based on the transient energy function (TEF) 

method is a potential candidate to meet the requirements of real time transient 

stability evaluation. The main features that make the TEF method an attractive 

candidate for fast computation of stability limits are the avoidance of time consum­

ing step-by-step time domain simulations and provisions for qualitative measure of 

the degree of system stability via the energy margin. 
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1.2 Basis for the Transient Energy Function Method 

The second method of Lyapunov provides the theoretical origin of the direct 

methods. Successful application of the direct methods requires the construction of 

a valid Lyapunov function and the determination of the region of stability. Many 

of the Lyapunov functions used are selected on the basis of energy considerations 

and they are called energy functions. 

The second or "direct" method of Lyapunov is based on a basic concept. The 

principal idea is contained in the following reasoning 

jrp 
" j y  t h e  r a t e  o f  c h a n g e  o f  t h e  e n e r g y  E { x )  o f  a n  i s o l a t e d  p h y s i c a l  

system is negative for every possible state' x except for a single equilib-

rium state then the energy will continually decrease until it finally 

assumes its minimum value E(xg)" [1]. 

The concept of the TEF method can be easily understood by a simple analogy. 

Consider a vehicle being pushed uphill, as in Figure 1.1. The point at which the 

vehicle rests at the bottom of the hill is referred to as the stable equilibrium point 

(SEP). Motion is initiated in the vehicle by giving it a sudden push, transferring to 

it some energy, V. 

This disturbance causes an imbalance and injects energy into the system. This 

makes the vehicle move away from equilibrium. The energy components can clearly 

be identified as kinetic and potential. The maximum amount of energy, Vmaxi that 

could be given to the vehicle without it going over the hill can be easily computed. 

The point at which this maximum energy is achieved (the top of the hill) is the 

unstable equilibrium point (UEP). The sign of AF = Vmax ~ ^ indicates whether 
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Figure 1.1: The vehicle-hill analogy 
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or not the vehicle will go over the hill, and the magnitude of AF indicates how 

much additional energy could have been given to the vehicle without it going over 

the hill. On the other hand, if the sign is negative , the vehicle will go over the hill, 

and the magnitude of AV indicates how much less energy should have been given 

to the vehicle so that it would not have gone over the hill [2]. In other words, in the 

post disturbance period, the kinetic energy must be converted to potential energy 

if stability is to be maintained. 

Similarly, when a power system's equilibrium is disturbed, there is an excess 

(or deficiency) of energy associated with the synchronous machines, setting the 

machines to move away from equilibrium. This motion is indicative of the fact that 

the excess energy is converted to kinetic energy (or the energy deficiency is extracted 

from the kinetic energy of the rotating masses). If that motion goes on indefinitely, 

synchronism would be lost. To avoid this, the system must be capable of absorbing 

this excess energy at a time when the forces on the generators tend to bring the 

generators back toward new equilibrium positions. This capability depends on the 

potential energy of the post disturbance network. For a given post disturbance 

system configuration, there is a maximum or critical amount of transient energy that 

the network can absorb. Thus, requirements of a good transient stability assessment 

are functions that describe the transient energy responsible for the separation of one 

or more generators from the rest of the system, and a good estimate of the critical 

energy required for the generators to lose synchronism with the system. 

The TEF method adopts the center of inertia (COI) formulation, which de­

scribes the motion of all generators with respect to the inertial center. This formu­

lation offers physical insight into the transient stability problem and also removes 
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the energy associated with the inertial center acceleration which does not contribute 

to the stability determination. The energy function which accounts for the transient 

energy of the system is computed with respect to the energy at the equilibrium state 

of the post disturbance network. The transient energy function has two components: 

kinetic energy and potential energy. 

1.3 Transient Stability Assessment 

In the TEF method, the transient stability assessment is made by comparing 

two values of the system transient energy function V. The value of V at the end of a 

disturbance,is compared with a critical value of V, which is , the potential 

energy at the controlling UEP. If is less than the system is stable and if 

is greater than the system is unstable. It is obvious that if correct and 

reliable assessment is to be achieved, accurate and reliable evaluation of both values 

of V must be made. This in turn implies a reliable evaluation of the SEP and UEP, 

the conditions at the end of the disturbance, and an accurate accounting of the 

transient energy. 

1.4 Review of Direct Methods of Transient Stability Analysis 

1.4.1 Early work on energy functions 

The earlier work on the development of direct methods for the transient sta­

bility analysis of power systems involved energy methods. The earliest and most 

familiar energy method for transient stability analysis is an "equal area criterion" 

for a single machine-infinite bus system. This criterion simply states that if the ki-
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netic energy acquired by the generator rotor during the disturbed period is less than, 

or equal to, the energy converted to potential energy during the post disturbance 

state, then stability will be maintained. Kimbark [3] gives a detailed treatment of 

this subject. 

In 1930, Gorev (in the Soviet Union) used the first integral of energy to obtain 

a criterion for power system stability for a 3-machine system [4]. This criterion used 

a solution method equivalent to the determining of a region of stability for the SEP. 

This was one of the earliest energy function method and was not discovered in the 

West until the 1970s. 

In 1947, Magnusson [5] applied the energy function to determine the stability 

of a power system. He developed a technique using the classical model with zero 

transfer conductances. His approach was very similar to Gorev's. However, the 

significant difference between these two formulations was that Magnusson derived 

the energy function with respect to the post disturbance SEP. 

In 1958, Aylett [6] proposed an "energy integral criterion" for multimachine 

systems. He studied the nature of phase-plane trajectories of a multimachine system 

using the classical model and arrived at the criterion for stability based on the 

comparison of the phase-plane trajectories with a critical trajectory which passes 

through a saddle point. The most significant aspect of this work is the formulation 

of the system equations based on the inter-machine movements. The concept of the 

"separatrix" and "region of stability" was also introduced in this paper. 
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1.4.2 Application of Lyapunov's direct method 

After this early work on energy methods, Lyapunov's direct method emerged 

as a solution to the power system stability problem. The pioneering work in this 

area was done by Gless [7] and El-Abiad and Nagappan [8]. Gless [7] used a single 

machine infinite bus example and matched the results obtained by direct method to 

those obtained by using equal area criterion and Aylett's phase-plane technique. In 

1966, El-Abiad and Nagappan [8] developed a Lyapunov function for a multimachine 

power system. 

A great deal of attention was devoted by the researchers toward identification 

of correct critical energy levels. In essence, it involved identifying an appropriate 

UEP among numerous UEP solutions existing in a multimachine system. Gupta 

and El-Abiad [9] identified that the UEP of least potential energy may not be 

near the trajectory at all, and it may lead to very conservative results. With the 

explanation based on system behavior, the relevant UEP was identified as the one 

with minimum energy levels among the UEPs close to the disturbed trajectory. 

Thus the exact determination of the UEP closest to the disturbed trajectory and 

reduction in search time are the main contributions of this work. 

Since then, a great deal of research effort has been devoted to the systematic 

construction of Lyapunov's function for transient stability analysis of power systems, 

and determination of region of stability for these functions. The survey papers by 

Fouad [10] and Ribbens-Pavella [11] provide a comprehensive review of the work 

done in this area until the mid 1970s. 

Stability analysis by Lyapunov theory gave very conservative results when com­

pared to conventional time simulation, and appeared to be a mere academic exercise 



www.manaraa.com

10 

and was viewed with skepticism by the power industry. 

1.4.3 Improvements to the Direct Methods 

The approach of formulating the system equations with respect to the system 

inertial center [12,13] improved the calculation of transient energy. The inertial 

center formulation removes the component of system transient energy that does 

not contribute to instability, namely, the energy that accelerates the inertial center. 

Further, this formulation enables the analyst to draw an analogy between each 

machine of a multimachine system and the one machine infinite bus system. 

In the late 1970s, attention was again focussed on developing a suitable energy 

function which could be expressed in terms of physical energy components. 

In 1979, Athay and co-workers [14,15] at Systems Control, Inc. (SCI) made 

significant progress towards developing the TEF method for practical applications. 

These accomplishments are summarized below: 

1. A clear understanding and verification of the fact that by appropriately ac­

counting for fault location, the stability of a multimachine system can be 

assessed. This played a vital role in the identification of the relevant UEP. 

2. The development of techniques for the direct determination of critical clearing 

times. Approximate method of incorporating the effects of transfer conduc­

tances, accurate fault-on trajectory approximation and calculation of UEPs. 

3. The concept of the potential energy boundary surface (PEBS), developed by 

Kakimoto and co-workers [16], using a Lur'e type Lyapunov function, was 

utilized to understand the system separation mechanism, which allowed for 
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significant improvements in direct stability assessment. 

As with the previous methods, this still had drawbacks in terms of providing 

conservative results for the critical clearing time for a wide range of fault conditions. 

In certain cases with a complex mode of instability, the correct unstable equilibrium 

point (UEP) could not be predicted accurately. 

For an accurate estimate of the region of stability, extensive simulations were 

conducted by Fouad and co-workers [17,18] at Iowa State University and the conclu­

sions of these simulations provided the physical insight into the modes of instability 

of a practical power system. Among their findings were the following: 

1. Not all the excess kinetic energy at the instant of fault-clearing contributes 

directly to the separation of the critical machines from the rest of the system. 

This component of kinetic energy which accounts for the other intermachine 

swings should be subtracted from the energy that needs to be absorbed by 

the system for stability to be maintained. 

2. When more than one generator tends to lose synchronism, instability is de­

termined by the gross motion of these machines, i.e., by the motion of their 

center of inertia. 

3. The concept of a controlling UEP for a particular system trajectory is a valid 

concept. 

The identification and the actual calculation of the controlling UEP in the 

absence of time solutions is a challenging task. Fouad et al. [19] developed a 

criterion to identify a controlling UEP among several probable candidate UEPs 
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provided by the analyst. The criterion provided by them accounts for two important 

aspects of the transient behavior of the systems, namely, 

• the effect of disturbance on various generators, and 

• the energy absorbing capacity of the post disturbance network. 

Pai [1] summarizes various methods of computing the region of stability in a 

systematic manner. Chiang et al. [20] presented a theoretical foundation for the 

direct method by providing a mathematical and physical reasoning for the existence 

of the controlling UEP. 

In 1982, Vittal [21] and Michel et al. [22] developed an individual machine 

energy function in order to identify the transient energy pulling a particular machine 

from the rest of the system. Michel et al. [22] have concluded that system separation 

does not depend on the total system energy, but rather on the transient energy 

of individual machines or groups of machines. However, the individual machine 

energies along the faulted trajectories need to be evaluated at each time step, thus 

increasing the computation time. 

With these significant contributions, the TEF method became a reliable tech­

nique for assessing transient stability. Over the recent years, the TEF method has 

been extended by improving computation techniques and modeling of power sys­

tem components. These improvements include applications of the TEF method 

to stressed large-scale power systems [23,24], incorporation of the effects of exciter 

[25,26], 2 terminal HVDC [26] and out-of-step impedance relays [27]. 
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1.5 Motivation for the Present Work 

Although the importance of the behavior of loads as a function of voltage 

in power system stability studies has long been recognized, and studies of load 

characteristics have been made many years ago, except for rather special cases, 

stability was usually regarded as a problem of holding the generators together [28] 

and hence the emphasis was on refinements of generator representation, with the 

loads regarded as secondary. 

However, this situation has changed, and much more attention has been devoted 

to load behavior as a function of both voltage and frequency within the last decade. 

There are several reasons for this: 

1. The tendency to improve the quantitative accuracy of system simulation 

2. The study of large interconnected systems, which makes it necessary to have 

a certain consistency in representation among the component systems. 

Considerable progress has been made in first swing power system transient 

stability assessment using the TEF method. Recently, the technique has also been 

successfully applied to large-scale power systems. The technique has also been 

tested on a variety of applications. In most of the work reported in the litera­

ture, the technique has been applied to the classical power system model. This 

research attempts to remove some of the modeling restrictions of the TEF method 

by incorporating the effect of nonlinear load models. 

In some earlier work on incorporation of nonlinear load models, the PEBS 

method was used to estimate the critical energy [29,30,31]. In [29], real and reactive 

loads at each bus are represented as voltage-dependent functions of a base demand. 
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The demand term is represented as a torque, and a conceptual swing equation is 

developed for each load bus. The energy corresponding to each load bus is then 

added to the energy corresponding to the machine swing equations to obtain total 

system energy. 

In [30], current injections corresponding to the load buses are reflected at the 

internal generator buses under the assumption that the complex ratio of the internal 

generator voltage to the load bus voltage is constant. 

In [31], the sparse formulation using the PEBS is used to represent the nonlinear 

loads. Since a time simulation is made to obtain the trajectory, an alternate network 

solution is done at each time instant to obtain the voltages at the load buses, 

maintaining the nonlinear characteristic. 

This research outlines in detail a procedure to represent nonlinear load models; 

including combinations of constant current and constant MVA components, in the 

reduced TEF formulation. The effect of the nonlinear loads on the SEP and the 

controlling UEP solutions are determined via current injections of load components 

during the solution process at the internal generator nodes. The energy function is 

suitably modified to account for these current injections. A procedure is proposed 

to conduct transient stability assessment using the new energy function. 

The other aspect of this research deals with the application of the TEF method 

to stressed large-scale power systems. The advent of extensive interconnected op­

eration and the inability of the utilities to install additional transmission capacity 

has led to the maximum loading of transmission lines in certain regions. 

In many parts of the network the stressed conditions are created by: 

• a high level of system loading. 
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• heavy power transfers across certain transmission interfaces and 

• heavy loading of certain plants for economic operation. 

Under these stressed conditions the power system is vulnerable to disturbances that 

can affect reliability. 

When the area of stress encompasses most of the interconnected system, the 

system has to be represented in its entirety. In such cases, geographically remote 

disturbances can have an effect upon the other portions of the system. Moreover, 

it may be necessary to identify exactly the key areas that separate from the system 

in extreme situations. 

The post disturbance network of the stressed system is characterized by weak 

synchronizing forces caused by large transmission impedances. The generators away 

from the fault location may also separate from the system. The dynamic phe­

nomenon can be described as follows: Following the disturbance, a small group of 

generators close to the fault location are severely disturbed initially. But, as the 

transient progresses, the weak synchronizing forces in the system dominate. When 

instability occurs, it takes place as a separation of a large group of generators (in­

cluding the small group severely disturbed by the fault initially) from the rest of the 

system. This is the so-called "inter-area" mode phenomenon of stressed systems. In 

extreme situations of instability, the post disturbance network, with loss of critical 

transmission facility, may not even be steady-state stable. The stability limited 

conditions of interest in operating the stressed systems (e.g., power transfer across 

a critical transmission interface) may be limited by the power generation levels of 

units far away from the fault location. 
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Hence, we need some technique which would identify the possibility of the 

inter-area mode phenomenon. The technique suggested in this research work uses 

the theory of modal analysis to identify the inter-area mode. 

1.6 Scope of this Research Work 

The objectives of this research work are: 

1. Develop a technique to account for the effects of nonlinear loads in the TEF 

method. 

2. Apply this technique to a 4-generator test system and a 17-generator test 

system. 

3. Compare the results obtained by this technique with those obtained by time 

simulation. 

4. Develop a technique which would identify the possibility of the inter-area 

mode phenomenon. 

5. Apply this technique to several test systems, including stressed and unstressed 

systems. 

6. Indicate the inter-area mode, if present. 
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2 MATHEMATICAL MODEL 

2.1 System Equations 

The simplest model representing a multi-machine power system, commonly 

called the classical model in literature [32] has been used in the analysis presented 

below. This model is based on the following assumptions: 

1. Mechanical power input to each generator remains constant. 

2. Damping is negligible. 

3. The synchronous machine can be represented by a constant voltage source 

behind transient reactance. 

4. The motion of the rotor of the machine coincides with the angle of the voltage 

behind transient reactance. 

5. Loads are represented by constant shunt impedances. 

It should be noted that the last assumption is not applied to Chapter 3, where the 

loads are represented by constant current or constant M VA. 

Based on these assumptions, the swing equations that govern the dynamics of 

the n-machine system are given by 
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MjWj = Pi  -

I ' I  —  1 ^ 2 ^ .  . , ^ 7 7  (2.1) 

where 

Pi  =  
n  

Pei = E [Qj sin(8i-èj) + j cos(6i - 6j)] 
j  =  l  

and 

G'jj - driving point conductance 

- mechanical power input 

E.^ - internal bus voltage of generator i 

Mj - inertia constant 

G^j -T - the transfer admittance in the system reduced to the internal 

The above equations are written with respect to an arbitrary synchronously rotat­

ing reference frame. Transforming equations (2.1) into the inertial reference frame, 

provides a better physical insight into the transient stability problem formulation. 

This formulation conveniently removes the kinetic energy associated with the ac­

celeration of the inertial center of the system [18]. 

node between generators i and j 

81 - generator rotor speed and angle deviations with respect to a 

synchronously rotating reference frame 
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In order to transform equations (2.1) to the center of inertia (COI) frame, 

define 

My s ËM, 
1=1 

«0 s (2 2) 
"T i=l 

Then 

u^o = ^0 

Mrj^CjQ = Y. = I] {Pi  -  Pel)  =  PCOI (2.3) 
i=l i=l 

Now, the new angle and speed of machine i in COI frame is 

Q'  =  w - - WQ 

It can be noted that 0  and w always satisfy the constraints of the inertial center 

reference frame, namely, 

Y1 = 0 
i = l  

= 0 (2.4) 
(=1 

In the inertial center reference frame, the equations of motion become 

MiCbi = Pi - Pei - ̂ PCOI = fi 

èi = Wj , i = l,2, ...,n (2.5) 
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2.2 Equilibrium Points 

The equilibrium points of the system are the points which satisfy 

° = Pi-Pei -^Pcor  

0 = i = 1,2,..., n • (2.6) 

From these equilibrium points, the stable equilibrium point (SEP) 6_^ and the 

controlling unstable equilibrium point (UEP) are of interest for the analysis by 

the TEF method. The SEP will have all generator angles less than 7r/2 radians. 

The calculation of 6^ is rather straightforward, as it represents the unique post 

disturbance steady state operating condition. The unstable equilibrium points can 

be as many as a theoretical maximum of — 1 for a n-machine system [1]. The 

controlling UEP ^ is the unstable equilibrium point relevant to the disturbance 

under investigation. This represents the unstable equilibrium point of the system, 

in which the angles of a certain group of generators are advanced (generally, greater 

than 7r/2 radians, in the case where the disturbance causes the generators to accel­

erate). 

The mode of disturbance (MOD) is a terminology for characterizing the con­

trolling UEP. The controlling UEP can be described by a certain group of machines 

severely affected by the disturbance; they include, but are not necessarily restricted 

to the machines initially losing synchronism in the post disturbance network [17]. 

The group of machines characterizing the controlling UEP is referred to as the MOD 

for a given disturbance and a specific post disturbance network. 
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2.3 The Transient Energy Function in the COI Formulation 

From the system equations (2.5), the transient energy function V is given by 

[181 

i = l  i = l  

n - l  n  
Z Z [Q;(cosO i j  - cose l j ) - J  D i j C o s e i j d { e i  +  e j ) ]  { 2 . 7 )  
i=l j=i+l  ga+gj  

i  J  

where 9'^ is the SEP of the post disturbance system. 

The first term in equation (2.7) is the kinetic energy while the other terms 

represent the rotor position energy, magnetic energy and the dissipation energy 

components, respectively of the system potential energy. The last term, which 

represents the energy dissipated in the network transfer conductances is a path-

dependent integral. This term can be calculated only if the system trajectory is 

known. For the purpose of analysis by the direct method, this term has been 

approximated with linear approximation of the trajectory. 

Chapter 3 will demonstrate how the nonlinear load models can be incorporated 

in the TEF method, and Chapter 4 will illustrate the results of this modeling. 
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3 INCORPORATION OF NONLINEAR LOAD MODELS IN THE 

TEF METHOD 

3.1 General Approach 

In detailing the approach in incorporating the nonUnear loads in the TEF 

method, it is convenient to take an overview of the various steps involved in the 

basic TEF procedure [24]. Figure 3.1 outlines the various algorithmic steps in the 

TEF procedure. 

Careful analysis of the various steps in the TEF procedure indicates that there 

are four major components, in which the effect of nonlinear loads have to be incor­

porated. These are: 

1. SEP and UEP solution 

2. Conditions at fault clearing 

3. Mode of disturbance (MOD) evaluation 

4. Energy margin computation 

The main idea is to reflect the load current vector onto the generator internal 

buses. In the following sections, the details of the nonlinear load incorporation in 

each of the components will be discussed. 
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Start 

Input data 

Build the admittance 
matrix 

Compute the stable 
equi. point 

Compute conditions at 
the end of the disturbance 

Identify the mode 
of disturbance 

Compute the reduced 
disturbed admittance matrix 

Compute the unstable 
equilibrium point 

Eliminate all fixed 
buses 

Compute the energy 
margin 

Compute the reduced 
post disturbance 

admittance matrix 

ure 3.1: Flow Chart of the TEF Procedure 
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3.2 SEP and UEP Solution 

In obtaining the SEP and UEP solution for the classical power system model 

in the center of inertia (COI) reference frame, the same set of nonlinear algebraic 

equations for the post disturbance network as in Chapter 2 are used. The starting 

point for the solution process is different for each case. 

In obtaining the post disturbance Ygirg matrix reduced to the internal gener­

ator nodes, the following steps are used, and the intermediate stages of the ^g 

reduction saved to incorporate the nonlinear loads in the SEP and UEP solution. 

1. Using the network admittance matrix including all load buses and generator 

terminal buses, and incorporating terms on the diagonal entries of the 

generator terminal buses, we obtain. 

11 M2 

21  *22  

Fi 

The admittance matrix above is termed as 

2. The above matrix is augmented with the internal generator buses and all the 

• terminal buses are reduced to obtain, 

' x f '  

. X f ,  

Y 

Y 

The above admittance matrix is termed as Y 

B y B 
11 *12 
B Y-B 
21 * 2 2  

V l  

E 

B 
BUS . We retain the terminal 

buses of those generators at which loads are to be modeled. 

3. Finally, all the load buses are reduced to obtain the admittance matrix reduced 
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to the internal nodes, 

ic = £ 

These steps require no additional computation and are obtained as intermediate 

steps in the final reduction. 

3.2.1 Procedure 

1. At each load bus, the component of constant impedance load is folded into 

the For the constant current and constant MVA portions, evaluate 

current components. 

0 0 * 

L 

where. 

P® - Pre-disturbance MW load 

- Pre-disturbance MVAR load 

- Pre-disturbance load bus voltage 

P2 t Q2 ' multipliers for constant current MW and MVAR 

load components respectively 

P3,q3 - multipliers for constant MVA, MW and MVAR 

load components respectively 
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2 .  F o r m J  +  i - C M  ^  h -

Using a source transformation evaluate the current injected (Norton equivalent 

F /  f)  
source current) at the generator buses as £2 = ~r / 

3. Solve for 
Ei 

y 
G 

usmg, 

where is the network admittance matrix, which includes all the load 

buses and generator terminal buses, and incorporates on the diagonal 

entries of the generator terminal buses. 

-h  

1-2 
BUS 

-G 

(3.2) 

Then update 

Lcm 

iT /neu ' i  \ \ rnew\  

+ jQln  

y n e w  
L 

PiPz  + jQ\qz  
- / n r —  

L 

)0 

y n e w  (3.3) 

iterate over equations (3.2) and (3.3) until the difference in the magnitude of 

the current vector between successive iterations satisfies a given tolerance. In 

this research work, the iterative algorithm presented in [33] is used. A brief 

outline of the procedure is presented in the Appendix. 

4. Using (which is the network admittance matrix corresponding to the 

load buses and generator internal buses) the current vector - I  i-l is reflected 
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onto the generator internal buses using the distribution factor approach sug­

gested in [34]. After eliminating Fjr, we write 

I2 = -Y B  
21 11 

- 1  

where 

LGL = 

1-1 + 

r B  
21 

"yB 
*22 - *21 

r B  
11 

r B  
12 E g  

r B  
11 -h  (3.4) 

is the reflected current vector on the generator internal nodes. 

5. Augment the electrical power output of each generator with a component 

corresponding to Lq£, 

Ki = ^ei + (3-5) 

where lQi,.^4>i is the complex reflected current. 

6. Perform one'iteration of the SEP and UEP solution using 

P ;  -  P ' -  -  ̂  
' Mn 

Pq Q [  —  0  ,  i  —  1 ,  2 , .  .  .  ,  7 Î  (3.6) 

where 
n  

i = l  

. Update the 6 vector and evaluate the mismatches. If the solution converges 

stop, or else go to step 2. 

3.3 Conditions at Fault Clearing 

The conditions at fault clearing are determined using the approximate tech­

nique developed in [18]. In this technique, the acceleration is held constant over 
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each time step of the faulted period. The accelerating power for each machine is 

evaluated using a procedure identical to the SEP and UEP solution, where the 

component of current corresponding to the nonlinear loads is reflected onto the 

generator internal buses, at the beginning of each time step. The procedure for re­

flecting the currents is done using the faulted Y BUS parameters. The time period 

from the instant of the fault /q to the instant of fault clearing fyis divided into 

several intervals, each of length At. This technique is detailed below: 

1. From the network solution of the faulted network, find the accelerating power 

as follows: 

• Apply steps 1 through 5 of the procedure detailed in section 3.2.1, using 

the faulted ^QlJS parameters, to get the augmented electrical power 

output of each generator Pe{tQ), which includes the effects of the non­

linear loads. 

• Compute the accelerating power (during the fault) by: 

Pa = -Pe(^Q-)  -  Pe{tQ+)  

2. The speed change at the end of the first interval is given by 

3. The angle change is given by 

A5(/i) = (27r/ X degrees  

and 

5 ( < l )  =  6 ( ^ o )  +  



www.manaraa.com

29 

4. A new network solution is evaluated for the new position of the generator 

rotors and a new accelerating power Pa is calculated using the same method 

as in step 1. 

5. The parameters at the end of the susequent time intervals are 

The MOD is evaluated using the ray point for each candidate mode [24]. The 

ray point is determined from the SEP, which incorporates the effect of the nonlinear 

loads. The procedure for determining the ray point is described below: 

The UEPs of interest lie in the proximity of the corner points of a polytope [1]. For a 

given mode, e.g., determined by machines i and j having advanced angles, the corner 

p o i n t  f o r  a n  n - m a c h i n e  s y s t e m  w o u l d  h e  [ 0 ^ , 6 2 ,  •  • .  , { t t  -  0 ^ ) , . . . -  9 j ) , . . .  

In angular space, a ray from 9^ to the corrected corner point (which is the corner 

point corrected for the motion of the inertial center [23]) is formed. Along this ray, 

the potential energy is maximized, using a simple one dimensional maximization. 

The rationale behind this procedure is that in the direction of the approxima­

tion to the UEP, we determine a point in angular space at which the potential 

energy is a maximum. This point resides on the PEBS, which is a surface connect­

ing the various UEPs. Hence, a point on the PEBS offers a more realistic estimate 

3.4 Mode of Disturbance Evaluation 

of the UEP. 
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In order to evaluate the normalized potential energy margin to determine the 

MOD, the conditions at fault clearing are determined as described in section (3.3). 

It should be noted that during the motion along the ray the current injections 

have to be updated in order to evaluate the augmented electrical power. The steps 

involved in determining the energy margin are described in the following section. 

3.5 Energy Margin Computation 

Incorporating the component corresponding to the nonlinear loads, the expres­

sion for the system energy is given by 

V -  j  + Pç^  +Ei lQi .cos{e^  -  (pl )  
i=l 

where is the rotor speed with respect to the COL Integrating the above expres­

sions between suitable limits, the expression for the transient energy function, based 

on the linear trajectory approximation [18] for the transfer conductance terms, is 

given by, 

V = If: Mii? - f ;  Pi(«i - «1 ) -  " e ,  Ç  lCi j {cos«i j  -  cose f j )  
i=l  i=l  i=l  j=i+l  

[ 6 i  -t- 9 j  —  d f  —  )  

^  U  IJ '  

+ Z l̂ s (3.8) 
i = l i  

The expression for the energy margin using the corrected kinetic energy [18] is 
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then given by 

At' = - e\i:  [Ci j icose f - -  cose f j )  
z=l i=l i=l j=i+l 

+ 9^ -  ef  -

4 - ^ f P  «fj)i 
+ E Ld - 4>i)dOi (3.9) 

where 

McrMsys  
^^9 A/y 

-,c/ -c l  _ - c/ 
'^eç • "^cr  ^ sys  

9^ - rotor angles at the controlling UEP 

9^^ - rotor angles at fault clearing 

Mcr - sum of inertias of machines included in the 

MOD of the controlling UEP 

Msys - sum of inertias of the remainder of the machines 

O'er - inertial center speed at fault clearing of machines included in the 

MOD of the controlling UEP 

'^sys ' inertial center speed at fault clearing of 

the remaining machines 

The last term in equation (3.9) is path dependent and is evaluated by assuming 

a linear trajectory between 9^^ and 9^. This trajectory is divided into several parts. 

Numerical verification of this division on several systems has shown that the value 
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of the expression remains essentially unchanged when the number of divisions is 

increased beyond ten. Thus, we have, 

^  =  0 , 1 , 2 , . . . , 1 0  (3.10) 

At each point on the linear trajectory (i.e., for k = 0,..., 10), knowing the 

vector 9, obtain the injected currents at the generator buses and the network bus 

voltages, using the procedure detailed in Section (3.2). Now, update the load cur­

rents to maintain their nonlinear characteristics and compute the reflected current 

vector Lqi using equation (3.4). Using trapezoidal integration the energy compo­

nent is computed and the energy margin is obtained. 
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4 NUMERICAL RESULTS FOR NONLINEAR LOADS 

4.1 Test Systems 

The technique proposed in Chapter 3 was verified on two test systems: a 4-

generator test system and a 17-generator equivalent of the network of the State of 

Iowa. 

4.1.1 4-generator Test System 

This test system of 4 generators and 11 buses shown in Figure 4.1 is a modified 

version of the 9-bus, 3-machine, 3-load system widely used in the literature and 

often referred to as the WSCC test system. This system is described in detail in 

reference [18]. The generator data and the initial operating conditions are given in 

Table 4.1. This system was investigated for a three phase fault on bus #10 cleared 

by opening one of the lines between bus 10-8. 

4.1.2 17-generator Test System 

This test system of 17 generators and 162 buses is a reduced Iowa system model 

obtained from the power network of the state of Iowa. This system is also described 

in detail in reference [18]. The generator data and the system operating conditions 

are given in Table 4.2 and the network is shown in Figure 4.2. Three disturbances 
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Table 4.1: Generator data and initial conditions of the 4-generator system 

Generator Generator Parameters 
Initial Conditions 

Generator Generator Parameters Internal Voltage 
Number H 

(MW/MVA) (pu) 
Pmo" 

(pu) 
E 

(pu) 
6 

(degree) 
1 23.64 0.0608 2.269 1.0967 6.95 
2 6.40 0.1198 1.600 1.1019 13.49 
3 3.01 0.1813 1.000 1.1125 8.21 
4 6.40 0.1198 1.600 1.0741 24.90 

" On a 100-MVA base. 

Table 4.2: Generator data and initial conditions of the 17-generator system 

Initial Conditions 
Generator Generator Parameters Internal Voltage 
Number H E Ô 

(MW/MVA) (pu) (pu) (pu) (degree) 
1 100.00 0.0040 20.000 1.00319 -27.93 
2 34.56 0.0437 7.940 1.13339 -1.34 
3 80.00 0.0100 15.000 1.03015 -16.32 
4 80.00 0.0050 15.000 1.00112 -26.10 
5 16.79 0.0507 4.470 1.06797 -6.23 
6 32.49 0.0206 10.550 1.05056 -4.57 
7 6.65 0.1131 1.309 1.01611 -23.04 
8 2.66 0.3115 .820 1.12349 -26.95 
9 29.60 0.0535 5.519 1.11932 -12.40 

10 5.00 0.1770 1.310 1.06521 -11.12 
11 11.31 0.1049 1.730 1.07776 -24.35 
12 19.79 0.0297 6.200 1.06094 -10.12 
13 200.00 0.0020 25.709 1.01058 -28.15 
14 200.00 0.0020 23.875 1.02059 -26.73 
15 100.00 0.0040 24.670 1.01861 -21.10 
16 28.60 0.0559 4.550 1.12434 -6.68 
17 20.66 0.0544 5.750 1.11168 -4.40 

" On a 100-MVA base. 



www.manaraa.com

//_ 
\i UATCRTOMN 

; iFT.lHHHP 

\ 648 
/ I SFALLS Osioux FALLS 
! / 262 \ \ 

/ jaa 

/FT. RANDALL Y 

I I « 

WILHRI 

AOAKS 
*~o 

193 
LAKtFIELD 

HAZtlTOH 

.2,0 

LLNISH •••'' 

DAVttlPORl 

fiT/ 35 
SYCAMORE 

405 
PRACr., 
(115 kV) 

M. TOWIIQ 0^ 

779 
SUB 3451 

CALHOUN 

BOONtVlLLE 

406 
. T 

(115 kVl 
C. RAPIDS 

M. TOWN PRAR K. 46 

IS' LIMCOLfl/ASOORE 

COOPE 

CO O) 

Figure 4.2: 17-generator test system 



www.manaraa.com

37 

were investigated for this system: 

1. A three phase fault at Council Bluffs (C.B.) unit no. 3 (bus #436), cleared 

by opening line 436-771. 

2. A three phase fault at Cooper (bus #6), cleared by opening line 6-774. 

3. A three phase fault at Fort Calhoun (bus #773), cleared by opening line 

773-779. 

In all the cases, the critical clearing time was used as a measure of transient 

stability assessment. The results obtained using the TEF method were compared 

with time simulation results using the EPRI-745 program. 

4.2 Numerical Results 

The results for the 4-generator system are shown in Table 4.3. Three different 

combinations of nonlinear loads are considered. Since the TEF method has been 

well established using constant impedance loads, only combinations of constant 

current and constant MVA loads have been considered here. 

The results in Table 4.3 show that the proposed procedure provides an accurate 

assessment of transient stability in terms of clearing times. The normalized energy 

margin in the TEF also gives an estimate of the degree of stability (or insta­

bility). The proposed technique reliably brackets the clearing times for the stable 

and unstable cases and provides good comparison with time simulation results. 

Table 4.4 shows the results for the 17-generator system. In this system, for all 

the three fault locations considered, the load composition is 100% constant current. 
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Table 4.3: Stability assessment for 4-generator system 

Case Load Time Simulation TEF Method 
No. Composition Critically 

Stable 
Critically 
Unstable 

Critically 
Stable 

Critically 
Unstable 

Case Case Case Case 
t ^ ' s  f s A p u  t "s  AVn pu 

1 100% Const. I 0.12 0.125 0.10 0.399 0.12 -0.023 
80% Const. I 

2 20% Const. 
MVA 

0.105 0.11 0.105 0.081 0.11 -0.0129 

60% Const. I 
3 40% Const. 

MVA 
0.10 0.105 0.10 0.0013 0.105 -0.0878 

Table 4.4: Stability assessment for 17-generator system 

Case Load Time Simulation TEF Method 
No. Composition Critically Critically Critically Critically 

Stable Unstable Stable Unstable 
Case Case Case Case 
t ^ ' s  f ' s  t "s  AVn pu f s AV'n pu 

1 100% Const. I 0.18 0.20 0.18 0.1787 0.20 -0.2995 
2 100% Const. I 0.20 0.21 0.19 0.1143 0.20 -0.1408 
3 100% Const. I 0.31 0.32 0.33 0.0685 0.35 -0.2106 

Table 4.5: Results for 17-generator system with 100% constant impedance loads 

Case Load Time Simulation TEF Method 
No. Composition Critically Critically Critically Critically 

Stable Unstable Stable Unstable 
Case Case Case Case 
t^'s r's f s . t " s  

1 100% Const. Z 0.20 0.204 0.20 0.204 
2 100% Const. Z 0.204 0.212 0.204 0.212 
3 100% Const. Z 0.345 0.357 0.345 0.356 . 
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Table 4.5 shows the results for 100% constant impedance loads. Comparing the 

critical clearing times obtained for the constant current load representation and the 

constant impedance load representation, we see that the critical clearing times for 

the constant current load representation are smaller than those for the constant 

impedance load representation. Thus, we see a definite need to model nonlinear 

loads in power systems stability analysis. 

The results presented in Table 4.4 again indicate that the proposed technique 

provides stability assessment, which compares fairly accurately with the time sim­

ulation results. 



www.manaraa.com

40 

5 APPLICATIONS OF THE TEF METHOD TO STRESSED 

LARGE-SCALE POWER SYSTEMS 

5.1 Need for Analysis of Stressed Large Scale Power Systems 

The advent of extensive interconnected operation in North America and the in­

ability of utilities to install additional transmission capacity has led to the maximum 

loading of transmission lines in certain regions. 

In many parts of the network, the stressed conditions are created by: 

• a high level of system loading, 

• heavy power transfers across certain transmission interfaces, and 

• heavy loading of certain plants for economic operation. 

Under these stressed conditions the power system is vulnerable to disturbances that 

can affect rehability. 

When the area of system stress encompasses most of the interconnected system, 

the system has to be represented in its entirety. In such cases, geographically remote 

disturbances can have an effect upon the other portions of the system. 

Moreover, it may be necessary to identify exactly the key areas that separate 

from the system in extreme situations. Hence, it is necessary to represent the 

stressed systems in large scale for stability studies. 
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5.2 Difference in Analysis Between Unstressed and Stressed Systems 

The most common applications of the TEF method involve moderately loaded 

power system, which is brought to instability by an increased disturbance magnitude 

(e.g., longer fault duration). Most of these applications are limited to demonstrating 

the usefulness of the method in small or medium size power systems. The critical 

clearing times of disturbances are used as the basis for comparing the results of 

the TEF method to those obtained by conventional means. The transient behavior 

of system in these cases is easy to predict and the behavior is dominated by the 

effect of fault location and duration. The limiting conditions of interest (e.g., power 

flows) are usually limited by the duration of the fault and perhaps by the power 

generation of units close to the location of the fault. 

In contrast, a stressed system may exhibit a complex dynamic behavior. As in­

dicated before, stressed conditions arise due to increased power transfers and heavy 

loading of transmission systems. In such a situation, when a large disturbance of 

short duration occurs, the disturbance may be cleared by losing a key transmission 

facility. In some extreme situations of transmission inadequacies, the post distur­

bance system may not even be steady-state stable. A typical stability study of 

interest in the operation of the stressed systems is arriving at the transient stability 

limits in terms of critical transmission interface power flow limits and critical plant 

generation limits. Such a study is aimed at computing the guidelines for operat­

ing limits of certain power flows or generation, constrained by the stability of the 

system. 

The post disturbance network of the stressed system is characterized by weak 

synchronizing forces caused by large transmission impedances. The generators away 
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from the fault location may also separate from the system. 

5.3 Inter-Area Mode 

The dynamic phenomenon can be described as follows: Following the distur­

bance, a small group of generators close to the fault location are severely disturbed 

initially. But, as the transient progresses, the weak synchronizing forces in the 

system dominate. When instability occurs, it takes place as a separation of a 

large group of generators (including the small group severely disturbed by the fault 

initially) from the rest of the system. This is the so-called "inter-area" mode phe­

nomenon of stressed systems. In extreme situations of instability, the post distur­

bance network, with loss of critical transmission facility, may not even be steady-

state stable. The stability limited conditions of interest in operating the stressed 

systems (e.g., power transfer across a critical transmission interface) may be limited 

by the power generation levels of units far away from the fault location. 

The analysis of transients in a stressed system can therefore be complex. When 

first swing transient analysis is made by conventional means, the time solution must 

be run for a period of 2-3 seconds to detect the system separation and the areas that 

separate. The analysis of inter-area mode phenomenon by the direct method based 

on TEF method, can also be a complex task. A host of analytical and numerical 

issues are encountered and must be dealt with. 

The accurate assessment of the critical energy depends primarily on the deter­

mination of MOD, therefore it is crucial to select the candidate modes properly in 

order to determine the actual MOD. The number of generators can be very large 

in the stressed large-scale system. Hence, the selection of candidate modes by the 
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analyst is virtually impossible. Thus, it is vital to develop the TEF method to 

accommodate the automatic selection of candidate modes. 

5.4 MOD Shift 

The scheme for determining the MOD in the present version of the TEF pro­

gram, accurately predicts the mode of disturbance in the UEP of interest in case 

of unstressed systems. The mode of disturbance selected by this scheme in the 

stressed cases usually consists of machines which are electrically close to the distur­

bance location and severely disturbed initially. The UEP solution obtained using 

the MOD selected, however, contains many more advanced generators, indicating 

the existence of the inter-area mode of system separation. 

Thus, the MOD predicted in these cases is invariably a small group of generators 

that are severely affected initially and the true mode of disturbance is a large group 

of generators splitting from the system due to dominance of inter-area mode over 

the initial disturbance. 

Consider the following example [23]: In the Ontario-Hydro 50-generator system 

with Nanticoke generation at 3700 MW, a three-phase fault on the Nanticoke 500 

KV bus, cleared by opening Nanticoke-Milton 500 KV line at 0.108 sees, the MOD 

(predicted) comprises of two Nanticoke generators. The starting point (ray point) 

has these two machines advanced. However, the Corrected Gauss Newton (CON) 

method of solution, when started with this point, converges to a UEP with 29 

machines advanced, which includes the two generators of the predicted MOD. In 

this case the two Bruce machines were heavily loaded with 3160 MW, and the 

transmission system has limitations caused by losing a 500 KV line. 
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Thus, the initially predicted MOD is different from the final MOD, in this case. 

Presently in the TEF method there is a UEP verification scheme which verifies the 

MOD shift [23]. However, this verification scheme is only "after the fact" and what 

we need is a technique which would predict the onset of the inter-area mode. We 

will see how this is done in the following sections. 

5.5 Identification of Inter-Area Mode possibility 

As seen from the preceding section, in some cases, the final MOD is different 

from the initially predicted MOD. Hence, we need some technique which would 

identify the inter-area mode possibility. The technique suggested in this research 

to identify the inter-area mode possibility is based on the theory of modal analysis. 

5.5.1 System Equations 

We write equation (2.5) in the state space form as: 

è  O  I e  

à .  M - l j  G  w 
(5.1) 

where, J = d f i  
m 

, i , j  =  l , 2 , . . . , ( n ^  —  1 )  tvith r i g  = no of generators, is the 

Jacobian matrix evaluated at the post disturbance SEP and 9 and ù are vectors of 

perturbations in machine angles and speeds (in COI reference) respectively. This is 

of the form 

X = A.Y (5.2) 
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where, A is the n X n (where n = 2{ng — 1)) plant matrix and is given by 

A 
O I 

M - l j  O  
(5.3) 

a n d  % ( f )  i s  a  n  X 1 state vector whose variation with time defines the free motion 

of the system. 

5.5.2 Free Response Characteristics 

The precise nature of the free motion of the above continuous time system 

following any disturbance can be described very simply in terms of the eigenvalues 

and eigenvectors of the plant matrix A [35,36]. The eigenvectors of the system 

in equation (5.1) are easily shown to be the square roots of the eigenvalues of 

M~^J [36]. The system in equation (5.1) in fact has purely imaginary eigenvalues 

(occurring in conjugate pairs), which are distinct [36]. It is well-known [35] that if 

A has n distinct eigenvalues Aj(i=l,2,.. .,n), then it will also have n corresponding 

linearly independent n x 1 eigenvectors u^(i = 1,2,...,%) which are related by the 

equations 

In addition to the eigen properties of A, the corresponding properties of the 

A, I —  1 , 2 , . . . , 7 7 - (5.4) 

transposed matrix A', play an important role in the modal analysis of the system. 

A l s o ,  A  a n d  A '  h a v e  t h e  s a m e  e i g e n v a l u e s  [ 3 5 ] .  T h e  n  x  1  e i g e n v e c t o r s  V j [ j  =  

1,2,... , n) of a' are related by the equations 

A ' v j  =  \ j V j  j  =  1 , 2 , . . . ,  n  
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or 

V j A  -  X j v ' j  j  =  l , 2 , . . . , n  ( 5 . 5 )  

It is convenient to normalize the eigenvectors and V j .  Let U = [«1,242, • • • ,lLn] 

be the n x n modal matrix of A and V = , ̂ 2' • • • > be the n x n modal matrix 

of a'. Let A = diag[\i, A2,..., An,]. Then we have the following [35] 

AU = UA (5.6) 

A'V = VA (5.7) 

V'U = I„ (5.8) 

Now, introduce a new state vector ^(f), by the following transformation 

j[(f) == (5.9) 

Then we have from equation (5.2), 

V'iit) = AU^(f) (5.10) 

lit) = U-lAUe(0 (5.11) 

k i t )  =  M { t )  (5.12) 

The importance of equation (5.12) as compared with equation (5.2) is that A is a 

diagonal matrix, whereas A is, in general, non-diagonal. 

Equation (5.12) clearly implies that 

( ; ( < )  =  i  =  l , 2 , . . . , n  (5.13) 

and the solution of these equations are given by the formulae 

(iW = i = (5.14) 
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Therefore, %(f) is given by 

X ( i )  =  U | ^ ( / )  =  nJ 

f i W  

Î2W 

_ {»(<) 

(5.15) 

2C(0 = + îL2^2(0)e''2' + ... + (5.16) 

Putting < = 0, we get 

x ( o )  =  u i ^ i ( o )  +  ^ 2 ( 2 ( 0 )  +  • • •  +  m & ( o )  (5.17) 

From equation (5.8) we get 

^ i ( O )  =  £ - X ( 0 )  (5.18) 

(5.19) 

From equations (5.16) we have, 

2[(f) = + + + (5.20) 

or 

n 
m = 

i=l 
(5.21) 

This equation clearly shows that the free motion of the continuous time system 

governed by equation (5.2) is a linear combination of n functions of the form 

(i = l,2,...,n) which are said to describe the n dynamical modes of the system. 

Thus the "shape" of a mode is described by its associated eigenvector Uj, and its 

time domain characteristics by its associated eigenvalue A,j. 
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5.5.3 Participation Factors 

It has often been suggested that the significant state variables in each mode 

are those that correspond to large entries in the eigenvector «j, where ttj is the 

right eigenvector associated with eigenvalue A,j and is given by equation (5.4). An 

obvious objection to this, is that the entries of are, in general, incommensurable 

(for example, Uj^ consists of machine angles and speeds) and that changing the 

units in which the state variables are measured will correspondingly change the 

magnitudes of the entries of u.^, except for those entries that happen to be zero to 

begin with [36]. 

A related, but dimensionless measure of state variable participation (or par­

ticipation of machines) in a mode i may be obtained by examining not only the 

right eigenvectors Uj but also the associated left eigenvectors defined via equa­

tions (5.5). While the right eigenvector gives the "mode shape" (by describing the 

activity of the variables when the mode is excited), the left eigenvector gives the 

"mode composition", which describes what weighted combination of state variables 

is needed to construct the mode (see equations (5.17) and (5.18)). Mathematically, 

this can be seen by noting that the variable associated with the mode is obtained 

by "diagonalizing" equation (5.2). We can write 

m = u - i x ( o  (5.22) 

Thus, from equation (5.8) we have 

m = v'xc) (5.23) 

or 

iiit) = n'iKit) i = l,2,...,n 
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(5.24) 

Thus, from equations (5.21) and (5.8) we have 

{;(() = 

= £iï(0)e^i' Y. Vki (5-25) 
Â;=l 

where and denote the component of the eigenvectors and Uj, respec­

tively. The above equation suggests that the participation of the k^^ state variable 

in the mode may be measured via its "participation factor" [36], 

P k i  =  ( 5 - 2 6 )  

This quantity is dimensionless and is therefore not affected by change of scale on 

the variables. Thus, we may think of uj^j^ as measuring the activity of X_^ in the 

mode and as weighting the contribution of this activity to the mode. (It may 

d X  '  
also be noted that, ^kk the diagonal entry of the plant matrix 

A, is in fact the eigenvalue sensitivity, which relates changes in Aj to changes in 

o & k )  

5.5.4 Excitation of the Modes 

Let 

«i = y''X(0) ,i = l,2,...,n (5.27) 

= ^i(O) 

Then, equation (5.21) can be written as [37] 

^(0 = Zi (5.28) 
2 = 1 
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Now, we say that only one mode of oscillation, or briefly one mode, in particular 

the mode of the realization is excited, if 

X { t )  =  e ^ i ^ c  (5.29) 

where ç is a constant vector proportional to the eigenvector Uj^. 

The significant thing is that every component of X varies with time in the same 

way, namely as . The modes have several important properties [37]: 

1. There are n modes, one for each eigenvalue A^-. 

2. Each mode is excited independently of the other modes, i.e., an arbitrary 

initial condition will, in general, excite all the modes, but the amount, aj = 

1-^=^(0), of excitation, is clearly independent of that of any other mode. 

3. The excitation of each mode depends only on the initial state [38]. 

Equation (5.28) is a linear combination of the n functions of the form 

,i = 1,2, ...,n, (which are said to describe the n dynamical modes of the sys­

tem) each weighted by a^. This equation is the same as equation (5.21), where 

the "shape" of a mode was described by its associated right eigenvector and 

its time domain characteristic by its associated eigenvalue Aj. Also, it has been 

shown that eigenvalues and eigenvectors provide a profound insight into the system 

behavior [39] and that this insight can further be improved by the introduction of 

"dominance measures", which are the weights a, in equation (5.28). By the aid 

of these dominance measures, the dominant modes (or eigenvalues) can be chosen. 

It should be noted that the dominant modes selected in this way need not have 

the largest eigenvector norms. As indicated earlier, the entries in the eigenvector 
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are, in general, incommensurable, as they consist of machine angles and speeds, 

and hence, we cannot pick large entries in the eigenvector as the significant state 

variables. Thus, we measure the participation of a state variable in a chosen mode 

via its participation factors as explained earher in section 5.5.3. Also, we use the 

dominance measure, a.j, to give an indication of the dominant modes. The proce­

dure for selecting the dominant modes is described in the next section. Thus, aj 

can give an indication of the dominant modes. Computing the participation factors 

for each of the dominant modes will give us the participation of the various state 

variables (see equation (5.25)) in these modes. 

5.6 Procedure 

From the above observations, we can arrive at an algorithm to select the dom­

inant modes by examining both the magnitudes and angles of the a|s. This is 

demonstrated in the section on selection of modes. 

5.6.1 Eigenvalues and Eigenvectors of A 

• Run the TEF program to get the Jacobian J at the post disturbance SEP. 

This is done in order to represent the dynamic behavior of the power system 

for perturbations around the nominal operating condition of interest, which is 

the post disturbance condition. The aim is to study the stability behavior of 

the post disturbance system. Hence, linearization of the equations around the 

post disturbance SEP could result in a better approximation of the trajectory 

behavior. 
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• Form the plant matrix A using equation (5.3). 

• Compute the eigenvalues ( A j ,  i  =  1 , 2 , . . .  , n ) ,  right eigenvectors { u { , i  =  

1 , 2 , . . . ,  n )  a n d  l e f t  e i g e n v e c t o r s  ( v ^ ,  z  =  1 , 2 , . . . ,  n )  o f  A .  

• Select initial value of i.e., %(0) based on the angles and speeds at clearing 

as 

i(0) = 

- 9{ 

«2 - 4 

^ng-l - Kg-1 

^2 

~cl 
Tin —1 W 

(5.30) 

where 6^^ and 6^ are the clearing angle and SEP angle of the machine 

respectively, in COI reference and is the clearing speed of the machine 

in COI reference. 

5.6.2 Selection of Modes 

In this section we will use the "dominance measure" to select the dominant 

modes. As indicated earlier, the a.j's are weights in equation (5.28) and to select 

the dominant mode we could just select the a j which is the largest. However, a j is a 

complex number, which has a magnitude and an angle. Thus, we need to collect a's 

with similar angles, and then we can simply compare their magnitudes and pick the 
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one with the largest magnitude. Also, since the angles of a's lie in a wide range, we 

need to group them in various groups with similar angles, so that we can compare 

magnitudes of those with similar angles. This grouping is of significance in that it 

gives us some idea of the modes which interact. This interaction of modes will be 

further enhanced by the inclusion of the second order terms, as will be explained in 

section 5.7. 

Thus, the procedure for selecting the modes is as follows: 

• Compute ctj- , i = 1,2,..., n using equation (5.27). (It should be remembered 

that a is a complex number.) 

• Group modes which have angles of a within 20° — 30°. This will give us 

several groups. 

• Within each group, order the modes with decreasing magnitude of a. 

• Choose the first few modes from each group (for instance, those with magni­

t u d e  o f  a  u p t o  1 0 - 1 5 %  o f  t h e  m a g n i t u d e  o f  t h e  l a r g e s t  a ) .  

• Compute the participation factors for the chosen modes using k = 

1,2,..., n, i G I where I is the set containing the chosen modes. 

• Examine the participation factors V k i i ^  ~  ! > 2 , . . . , n  f o r  e a c h  m o d e  i  G I .  

• Pick the states k which give a significant value of pf^j^ (for instance, pf^.^ > 0.1) 

for each mode i € J. 

• These states k correspond to the machine (angles and speeds), which par­

ticipate in the mode. We make a table for each i E I and machines 

participating in that mode. 
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• In these tables if the machines picked up by the MOD test appear in just 

one mode, or appear in a mode just by themselves, then we have a simple 

mode. The MOD test in the TEF method is based on the lowest normalized 

potential energy margin as detailed in [23]. The MOD is a terminology for 

characterizing the controlling UEP, in which the angles of a certain group of 

generators are advanced (generally, greater than 7r/2 radians). 

• If the machines picked up by the MOD test appear in more than one mode, or 

in different modes, then we have a superposition of modes. In other words, if 

these machines participate in more than one mode then there is an indication 

of the interaction of these modes which could result in an inter-area mode or 

a complex mode. 

5.7 Inclusion of Second Order Terms 

The method of analysis used in section (5.5) is to linearize the differential equa­

tions describing the system behavior (equation (2.5)) by assuming small changes in 

the system quantities or the state variables. Equations for these variables are then 

found by making a Taylor series expansion around the post disturbance SEP and 

neglecting the higher order terms. Equation (5.1) results from the Taylor series 

expansion upto the first order terms. In stressed systems, the expansion of the 

nonlinear equations upto the first order terms may not be sufficient to understand 

the system behavior. Hence, we need to include some of the higher order terms 

(for e.g., the second order terms) also. Thus, we approximate equation(2.5) after 
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including the second order terms as follows: 

' - - I ' S  " 9  

where 

(5.31) 

J j = row of Jacobian 

G'=Hessian matrix for f ; — , j,k — 1, 2 , . . . ,  [ng 1 ) 

The expression for is given in [23]. Writing this in the form of equation (5.2), 

we have; 

X i  =  A i X  +  i  =  1 , 2 , . . . ,  n  (5.32) 

where row of the plant matrix A 

O O 
= 

O O 
for Î — 1 

O O 

^l-{ng-l) 

M: i—{ng — l) 
O 

for i = ng,... ,n 

where O is the null matrix of order {ug — 1). 

Again, we apply the transformation 

-M = u{(t) 

With this transformation, we can analyze equation (5.32) in terms of the modes, 

rather than the states. Equation (5.32) then takes the form 
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^ n n n n 

+ « S) Z! HP 12 Y1 ^km^iqHp 
p=l q=l fc=li=l 

2 n — 1  n  n n  n n  

'^n 12 H ^p^qWpq X] H ^^km^ip^ip ^PP H H ip^iq 
p=l g=p+l k = l i — l  fc=li=l 

n  n  n  n  

•t""9P 12 12 ^^km^iq^iq ^QQ X] 12 ^^km^iq^^ip 
^'=1 i=l A:=l i=l 

n n  n  n  n  

+ 12 v̂q 12  ̂ ^̂ km̂ ir̂ ip Hj 12 '̂km̂ ir̂ Hql 
r=l A:=li = l k = l i — l  

r^p,q 

,  m  =  1 , 2 , . . . ,  n  ( 5 , 3 3 )  

where U = [itpç] ,p,g = 1,2,... ,n is the modal matrix described earlier and V = 

[I'pg] ,p, g = 1,2,..., n is the inverse of U. From this equation, we see that 

n 2 1 n 
~ 12 ^Imp^p 12  ̂ ^2mpq^P^Q 

p=l p = l 9 = p + l  

, m  —  1 , 2 , . . .  , n  (5.34) 

The effect of the inclusion of the higher order terms can be observed by examin­

ing equation (5.34). Note that CQ^ = Xm and this represents the free response. 

The coefficients and C2^pq represent the interaction of the various modes. 

Based on the magnitude of the effect of the various modes on ^rn can be 

determined. In addition, the magnitude of C2mpq determine the extent of the 

interaction of the modes p and q. 

The procedure can be described as follows: 

• Select a mode m from those selected by considering only the first order terms. 

• Compute the coefficients CQ^, and C2fxipq for this mode. 
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• Compare the magnitudes of the coefficients and with that of 

^Om-

• List the p or p and q for those coefficients which are significant in magnitude 

when compared to CQ^. 

• Modes p and p and q seem to interact with mode m. 

The results for the inclusion of the second order terms are discussed in the next 

chapter. 
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6 NUMERICAL RESULTS FOR THE INTER-AREA MODE 

PHENOMENON 

6.1 Test Systems 

The technique proposed in Chapter 5 was verified on three test systems: a 17-

generator equivalent of the network of the state of Iowa, the 50-generator Ontario 

Hydro system and the 126-generator dynamic equivalent of the western USA system. 

6.1.1 17-Generator Test System 

This test system is the same as that used in Chapter 4. The area of interest is in 

the western part of the network (along the Missouri river), where several generating 

plants are located. A disturbance in this part of the network substantially influences 

the motion of several generators. Thus, very complex modes of instability can occur 

(and have been encountered in earlier research projects), offering a severe test to 

the procedure developed in Chapter 5. 

The inter-area mode investigation was conducted for the Cooper case and the 

Fort Calhoun case. The Cooper case represents a system with a simple mode, 

whereas the Fort Calhoun case exhibits a complex mode. 
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6.1.2 50-Generator Test System 

This test system comprises of 50 generators and 196 buses of the Nanticoke 

subsystem of the Ontario Hydro interconnected grid. The critical generators of 

the Nanticoke and Bruce complex of this system are shown in Figure 6.1. In this 

investigation, the "unstressed situation" can be typically referred to a condition 

when the Bruce (nuclear) units are not heavily loaded (Bruce generation is about 

1400 MW and Nanticoke generation is about 3840 MW). The "stressed situation", 

on the other hand, represents the condition of heavy generation schedule at Bruce 

units (Bruce generation is increased to about 3160 MW, with Nanticoke generation 

at 3900 MW), causing the transmission lines in this part of the network to be heavily 

loaded. The disturbance which is introduced close to the Nanticoke complex, is 

a fault at the Nanticoke bus, cleared by opening a 500 kv transmission line. The 

stability limits of interest in this case are the generation at the Bruce and Nanticoke 

complex. 

6.1.3 126-Generator Test System 

This test system is a dynamic equivalent of the western USA system obtained 

froni Salt River Project, Phoenix, Arizona [40]. This equivalent consists of 1443 

buses, 2215 branches and 126 machines. Figure 6.2 gives a schematic arrangement 

of the generators in the system. Each box in this figure represents an area and 

each number in the box represents a generator. The arrows between the boxes 

indicate the direction of the prefault power flows. For the case under study, the total 

generation in the system is 68968 MW. For this particular distribution of generation, 

the transmission network is heavily loaded which leads to a highly stressed system. 
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Figure 6.2: Schematic arrangement for generators in SRP system 
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One sign of the high degree of stress in the system is large machine angles at the 

prefault SEP for machines in Areas 2, 17 and 22. The largest machine in the 

system (both in inertia and mechanical power) is machine #13 (Palo Verde) in area 

1 (Arizona). Another characteristic feature of this system is that there are three 

large machines (equivalents) close to each other in area 2 (B.C.Hydro). This group, 

which consists of machines #18, 19 and 20 exports power to the southern part of 

the system. 

The fault considered is a 3-phase fault apphed on the 500 KV side of machine 

#13's step up transformer and is cleared by removing the 500 KV line between Palo 

Verde and Devers. 

6.2 Numerical Results with First Order Terms 

6.2.1 17-generator system 

The following indicates the application of the technique presented in Chapter 

5 to the 17-generator system with the same loading, but for faults at different 

locations. The following results demonstrate how the fault location affects the 

selection of the modes. 

6.2.1.1 Simple MOD Table 6.1 depicts the grouping of the a's for the 

various modes for the 17-generator system (Cooper case). The MOD test (presently 

available in the TEF program) picks machine #2. This machine appears only in 

mode #13 in Table 6.1. This appears to be a simple MOD, since the machine picked 

by the MOD test in the TEF method appears only in one mode. From the table, 

we see that for mode #13 the magnitude of a is 4.2035 and the eigenvector norm is 
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Table 6.1: 17-Generator System (Cooper Fault) 

Alph a Eigenvector Machines picked by 
Group Mode Magnitude Angle Norm Participation Factor 

1 13 4.2035 -44.92 0.94787 2 
19 2.0508 -36.65 0.73465 17 

2 3 1.3530 120.58 0.47591 1 
3 15 0.6637 -29.63 0.98095 11 

17 0.2762 -18.87 0.69658 5,6 
4 25 0.0297 -102.37 0,94229 7 

Table 6.2: 17-Generator System Participation Factors (Cooper Fault) 

Mode Participating Machines (Participation Factors) 

13 2(0.2941) 
19 17(0.3032) 
3 1(0.1685) 

15 11(0.4101) 
17 5(0.1841), 6(0.1431) 
25 7(0.3988) 

0.94787. This eigenvector norm is not the largest. As indicated earlier, the selection 

of modes is not based on the largest eigenvector norm alone, but is based on the 

groupings according to the angle of a's and the magnitudes of the a's. Examining 

the participation factors for mode #13, from Table 6.2, we see that machine #2 

has the largest participation factor of 0.2941, and hence, we pick machine #2 as 

participating in mode #13. The time domain simulation confirms this MOD [18]. 

6.2.1.2 Complex MOD Table 6.3 shows the grouping of the a's for the 

17-generator Fort Calhoun case. The MOD test in the TEF method picks up 

machines #2, 5, 6, 10, 12, 16 and 17 as the advanced machines. From Table 6.3 we 
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Table 6.3: 17-Generator System (Ft. Calhoun Fault) 

Alpha Eigenvector Machines picked by 
Group Mode Magnitude Angle Norm Participation Factor 

1 11 4.0303 148.32 0.92539 16 
5 1.4376 141.63 0.75070 3 

2 25 2.6756 -19.25 0.79731 17 
3 1.9917 -40.74 0.44868 1 
27 1.3745 -18.11 0.87255 2,1 

3 21 1.6079 160.95 1.12276 10,17 
31 1.1699 175.88 0.73034 5,6 

4 13 1.0612 71.24 8.98735 12 

can see that the machines picked up by the MOD test in the TEF method appear 

in different selected modes, for e.g., mode ^11 picks machine #16, mode #25 picks 

machine #17, mode #27 picks machine #2, mode #21 picks machine #10 and 17, 

mode #31 picks machines #5 and 6 and mode #13 picks machine #12. Table 6.4 

shows the participating machines with their participation factors for all the selected 

modes. Since the machines picked up by the MOD test in the TEF method appear 

in different selected modes, we see an interaction of modes #11,25,27,21,31 and 13, 

which gives rise to a complex mode. The time domain simulation also confirms 

the above machines as going unstable [18]. The results of Table 6.3 indicate a 

superposition of modes or an inter-area phenomenon. All the machines picked up 

by the MOD test are being picked up by this technique. Another point to note is 

that machines #1 and 3 can be eliminated from the table, as they are not advanced 

in the post disturbance period, since their angles at clearing are less than their SEP 

angles. 
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Table 6.4: 17-Generator System Participation Factors (Ft. Calhoun Fault) 

Mode Participating Machines (Participation Factors) 

11 16(0.2470) 
5 3(0.3082) 
25 17(0.3056) 
3 1(0.1619) 

27 2(0.2823), 1(0.1683) 
21 10(0.3506), 17(0.1019) 
31 5(0.1812), 6(0.1398) 
13 12(0.2730) 

6.2.2 50-generator system 

The following indicates the application of the technique of Chapter 5 to a 

system with the same fault clearing times, but with different loading conditions 

as described in Section 5.1.2. The following results demonstrate how the system 

loading affects the interaction of the various modes and hence their selection. 

6.2.2.1 Simple MOD Table 6.5 shows the grouping of the a's for the 

various modes for the 50-generator unstressed system. In this case, the MOD test 

in the TEF method, picks up machines #20 and 26. From Table 6.5, we can see 

that machines #20 and 26 appear independently only in mode #31. Here again, 

this appears to be a simple MOD, since the machines picked up by the MOD test 

in the TEF method, appear only in one mode. Looking at the participation factors, 

from Table 6.6, for mode #31, we see that machines #20 and 26 have the largest 

participation factors (0.3087 and 0.1866 respectively). 
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Table 6.5: 50-Generator System (Unstressed Case) 

Alph a Eigenvector Machines picked by 
Group Mode Magnitude Angle Norm Participation Factor 

1 91 1.6933 -80.29 6.38624 7 
93 1.4065 -80.99 4.81269 41 

2 87 1.3469 92.26 2.00828 7,41 
3 31 0.9801 -75.75 0.86132 20,26 

65 0.7926 -67.49 1.00298 12 
4 55 0.7898 113.97 0.93566 39 

67 0.7804 114.99 2.01499 12 
5 19 0.4729 -142.59 13.16788 13 
6 37 0.4025 77.48 0.87778 43 
7 1 0.3204 -22.56 0.91988 2,35 
8 13 0.2374 142.12 0.76119 3 
9 75 0.1522 -133.09 0.53933 21 

10 57 0.0939 121.65 1.96810 39,5 
11 53 0.0353 24.05 0.60087 46 

Table 6.6: 50-Generator System Participation Factors (Unstressed Case) 

Mode Participating Machines (Participation Factors) 

91 7(0.1612) 
93 41(0.1126) 
87 7((0.1806), 41(0.1760) 
31 20(0.3087), 26(0.1866) 
65 12(0.1704) 
55 39(0.1358) 
67 12(0.3183) 
19 13(0.3683) 
37 43(0.3567) 
1 2(0.3849),35(0.1122) 
13 3((0.4207) 
75 21(0.1074) 
57 39(0.1841),5(0.1276) 
53 46(0.1514) 
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Table 6.7: 50-Generator System (Stressed Case) 

Alph a Eigenvector Machines picked by 
Group Mode Magnitude Angle Norm Participation Factor 

1 89 2.8562 -76.73 2.83310 2,18,20,etc. 
31 1.1003 -67.85 0.72014 20,26,27 
33 1.0002 -77.53 1.09871 27 
67 0.9888 -68.05 1.06567 12 
69 0.8768 -66.59 1.69417 12 
21 0.6382 -52.49 1.01244 13 
17 0.1368 -40.40 0.80277 14,16 

2 87 2.8179 104.57 5.36859 41 
57 1.1744 115.09 0.94930 5,39 
85 0.4602 103.41 0.89355 48 

3 79 1.4184 -83.55 1.74620 7 
39 0.90728 -95.70 0.95425 43 
81 0.2355 -86.26 0.69677 9,25 
61 0.1319 -87.23 1.20443 4 

4 77 1.2795 88.46 0.87458 26 
37 0.8796 82.10 0.47105 2,6,20,etc. 
49 0.5795 86.92 1.07466 10 
55 0.3502 79.13 0.42536 25 
41 0.2996 91.24 0.45985 45 
23 0.1437 98.71 1.01275 8 

5 25 0.5411 125.49 1.02674 34 
9 0.2007 132.92 0.82326 23 

19 0.0625 127.77 0.89195 24 
6 1 0.5265 -19.35 0.91910 2,35 

13 0.1549 -34.05 0.78735 3 
7 11 0.1626 -171.62 0.96250 17 

65 0.0892 -144.59 0.80315 19,16 
95 0.0268 -164.33 9.55355 49 

8 5 0.09815 147.29 0.87599 30,31 
75 0.0948 150.79 0.61764 46 

9 53 0.0298 168.88 0.42895 46 
3 0.0168 164.77 0.99417 1 

10 97 0.0197 40.01 0.88220 22,21 



www.manaraa.com

68 

Table 6.8: 50-Generator System Participation Factors (Stressed Case) 

Mode Participating Machines (Participation Factors) 

89 2(0.0129), 18(0.0102), 20(0.0309), etc. 
31 20(0.2291), 26(0.1617), 27(0.1024) 
33 27(0.3514) 
67 12(0.3834) 
69 12(0.1032) 
21 13(0.3896) 
17 16(0.2816), 14(0.1900) 
87 41(0.1907) 
57 5(0.1573), 39(0.1132) 
85 48(0.1015) 
79 7(0.3421) 
39 43(0.4380) 
81 9(0.2813), 25(0.1603) 
61 4(0.4043) 
77 26(0.1062) 
37 2(0.0109), 6(0.0115), 20(0.0160), etc. 
49 10(0.2697) 
55 25(0.1337) 
41 45(0.1063) 
23 8(0.4382) 
25 34(0.3229) 
9 23(0.3805) 

19 24(0.3622) 
1 2(0.3836), 35(0.1135) 
13 3(0.4281) 
11 17(0.4467) 
65 19(0.2089), 16(0.1025) 
95 49(0.4740) 
5 30(0.3451), 31(0.1382) 
75 46(0.1246) 
53 46(0.1289) 
3 1(0.4583) 
97 22(0.3356), 21(0.1581) 
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6.2.2.2 Complex MOD For the 50-generator stressed case, the MOD test 

in the TEF method, again picks machines ^20 and 26. The mode in which machines 

#20 and 26 appear by themselves in the simple MOD case, disappears and mode 

#31 now picks machines #20,26 and 27. We see from Table 6.7 that the machines 

#20 and 26 appear in mode #31 and that machine #26 also appears in mode #77 

by itself. Thus, we see an interaction of modes #31 and 77. Table 6.8 shows the 

participating machines with their participation factors for all the selected modes. 

Since, the machines picked up by the MOD test in the TEF method, appear in 

different selected modes, we see a superposition of modes and conclude that this 

case exhibits a complex mode. It should be noted that the exact UEP for this case 

and the time domain simulation pick up the 28 machines: #1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11 ,12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 34, and 35. as 

advanced and most of these machines are being picked up by this test. In an earlier 

research work [41], the thinking was that in the stressed case the 2-machine mode 

shifts to the 28-machine mode, but the results of this research work seem to indicate 

that there is no mode which picks all these machines, instead several modes interact 

with each other and result in the inter-area mode phenomenon. 

6.2.3 126-generator SRP system 

This system has been studied in detail in reference [40]. The behavior of the 

system is such that for a clearing time of 15 cycles, it is the machine closest to the 

fault, machine #13 that goes unstable, but when the fault duration is decreased, a 

larger group of machines goes unstable. The time domain simulation results clearly 

indicate this [40]. 
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The following indicates the application of the technique in Chapter 5 to a 

system with the same loading, but with different fault clearing times. The following 

results demonstrate how the fault clearing time affects the selection of the modes. 

It should be noted that %(0) depends on the angles and speeds at clearing. The 

following results also indicate the effect of fault clearing time on the interaction of 

the various modes. 

6.2.3.1 Simple MOD For the 15 cycles clearing case, Table 6.9 shows the 

groupings of the a's for the various modes. The MOD test in the TEF method, 

picks up machine ^13 (Palo Verde). Machine #13 appears all by itself only in one 

of the selected modes (in mode #17). Table 6.10 shows the participating machines 

along with their participation factors for all the selected modes. It should be noted 

that although machine #13 is picked up in modes #23 and 43, along with other 

machines, it has a participation factor (0.0669 and 0.0458 respectively) which is 

not very significant when compared with the participation factor (0.1205) when it 

appears all by itself in mode #17. From the table we can see that the magnitude 

of a for mode #17 is 0.8125 and the eigenvector norm is 0.18732. Looking at the 

participation factors for mode #17, we pick machine #13 which has the largest 

participation factor of 0.1205. This appears to be a simple MOD, since the machine 

picked up by the MOD test in the TEF method, appears significantly only in one 

mode. 
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Table 6.9: 126-Generator System (15 cycles clearing) 

Alph a Eigenvector Machines picked by 
Group Mode Magnitude Angle Norm Participation Factor 

1 81 5.3390 -51.08 1.01882 39 
179 1.9638 -43.16 0.85080 93,108 

2 137 4.5982 132.85 1.08985 49,58 
43 2.2805 121.68 0.46059 13,21,66, etc. 

3 101 2.9795 150.02 0.96922 17 
121 0.6503 160.68 0.73410 6 

4 23 1.8131 -63.45 0.25372 8,13,21, etc. 
13 0.6712 -87.31 0.21972 18,19,20 

5 33 0.8787 -4.86 0.97452 25 
111 0.5462 -27.6 0.58799 31,33 

6 17 0.8125 105.23 0.18732 13 
203 0.4202 114.65 0.93583 14 

7 45 0.3705 3.24 0.66484 4,123 
109 0.3379 21.02 0.66413 12 

8 53 0.1586 -172.89 0.61415 7,40 
27 0.0548 -178.84 0.93128 113,114 

9 129 0.1363 68.05 9.84153 76 
10 133 0.1192 55.99 0.89579 97 
11 1 0.0984 -101.88 0.99991 111 

7 0.0116 -91.94 0.82370 81,82 
12 39 0.0089 -125.91 0.91970 63 



www.manaraa.com

72 

Table 6.10: 126-Generator System Participation Factors (15 cycles clearing) 

Mode Participating Machines (Participation Factors) 

81 39(0.1926) 
179 93(0.2124), 108(0.1103) 
137 49(0.2416), 58(0.1752) 
43 13(0.0459), 21(0.0312), 66(0.0169), etc. 

101 17(0.4216) 
121 6(0.2732) 
23 8(0.0106), 13(0.0669), 21(0.0117), etc. 
13 18(0.1428), 19(0.1442), 20(0.1355) 
33 25(0.4673) 

111 31(0.1540), 33(0.1965) 
17 13(0.1205) 
203 14(0.3196) 
45 4(0.1277), 123(0.1512) 

109 12(0.3081) 
53 7(0.1939), 40(0.1295) 
27 113(0.1322),114(0.3036) 

129 76(0.4104) 
133 97(0.3771) 
1 111(0.4985) 
7 81(0.1304), 82(0.3607) 

39 63(0.4222) 
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6.2.3.2 Complex MOD For the 8.5 cycles clearing case, Table 6.11 shows 

the grouping of the a's for the various modes. The machine picked up by the MOD 

test in the TEF method, is machine #13 and this appears in several of the selected 

modes (#23,43 and 63). Machine #13 does not appear all by itself in any of the 

modes, i.e., the mode in which machine #13 appears by itself, disappears. Table 6.12 

shows the participating machines with their participation factors for all the selected 

modes. In all the selected modes, machine #13 does not have a participation factor 

> 0.1. For selected modes #23,43 and 63, the participation factor of all machines is 

small and machine #13 does have a significant participation factor compared to the 

other machines. Also, from the time domain simulation [40], we see that machine 

#18,19,20,44,109,110 and 126 are the ones that go unstable. These machines appear 

in different selected modes, for e.g., machines #18,19 and 20 appear in mode #13, 

machine #44 in mode #173, machines #109 and 110 in mode #113 and machine 

#126 in mode #249. Thus, all the machines which go unstable (from the time 

domain simulation) are being picked up by this technique. The machine picked up 

by the MOD test in the TEF method, appears in different selected modes, thus 

indicating a superposition of modes or a complex MOD. 
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Table 6.11: 126-Generator System (8.5 cycles clearing) 

Alpha Eigenvector Machines picked by 
Group Mode Magnitude Angle Norm Participation Factor 

1 81 2.4991 -70.45 1.01852 39 
23 0.9572 -82.17 0.25372 8,13,21 etc. 

2 137 2.1668 115.07 1.08985 15 
43 1.1568 101.43 0.46059 13,21,66, etc. 
63 0.92731 108.47 0.36756 10,13,22, etc. 

3 101 1.4769 131.05 0.96922 17 
121 0.4114 135.48 0.73410 6 

4 117 0.7559 -50.37 0.99389 1 
33 0.6316 -30.77 0.77452 25 

5 13 0.3695 -97.28 0.21972 18,19,20 
141 0.0546 -91.58 0.90964 96 

6 1 0.1235 167.73 0.99991 111 
217 0.0583 169.75 0.83516 104 

7 5 0.1191 38.95 14.2025 65 
203 0.0891 55.33 0.93583 14 

8 133 0.0945 -22.99 0.89579 97 
249 0.0017 -14.15 1.33727 126 

. 9 197 0.0344 -140.65 1.13434 100,105 
163 0.0062 -134.82 0.62270 22 

10 157 0.0151 70.15 0.83259 107 
113 0.0003 84.14 0.84458 . 109,110 

11 173 0.0011 -166.08 0.84082 44 
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Table 6.12: 126-Generator System Participation Factors (8.5 cycles clearing) 

Mode Participating Machines (Participation Factors) 

81 39(0.1926) 
23 8(0.0106), 13(0.0669), 21(0.0117), etc. 

137 15(0.4777) 
43 13(0.0459), 21(0.0312), 66(0.0169), etc. 
63 10(0.0468), 13(0.0479), 27(0.0866), etc. 

101 17(0.4216) 
121 6(0.2731) 
117 1(0.3726) 
33 25(0.4673) 
13 18(0.1428), 19(0.1443), 20(0.1355) 
141 96(0.3338) 
1 111(0.4985) 

217 104(0.3328) 
5 65(0.4988) 

203 14(0.3195) 
133 97(0.3770) 
249 126(0.4132) 
197 100(0.1653), 105(0.2049) 
163 22(0.1968) 
157 107(0.3311) 
113 109(0.1292), 110(0.3439) 
173 44(0.4025) 
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6.3 Numerical Results of Inclusion of Second Order Terms 

6.3.1 17-generator system Ft. Calhoun case 

Table 6.13 lists the coefficients and for the various modes 

which were selected in Table 6.3. From Table 6.13, we see that for selected mode 

#11, the magnitude of coefficients for p=3,25 are comparable with the magni­

tude of CQ^, which is, in fact From equation (5.34), we see that C]^^p,p=3,25 

are coefficients (or weights) of the squared terms ^p,p=3,25. Thus, based on the 

theory developed in section (5.7), we conclude that modes #3 and 25 interact with 

mode #11, since their coefficients (or weights) are comparable with Also, 

from Table 6.3, we see that modes #3 and 25 are amongst the selected modes, thus 

confirming the superposition or interaction of modes. From Table 6.13, for mode 

#11, the magnitude of C2jjipq for p=l and q= 3 and 25 are also comparable with 

the magnitude of cq^ (= A^^). From equation (5.34), we note that these coeffi­

cients, C2jTipq, are the coefficients (or weights) of the product terms (p^q. Again, 

we conclude that modes #1,3 and 25 interact with mode #11, thus confirming the 

superposition of modes. Similarly, modes #1,3, and 27 interact with mode #5 and 

modes #1,3,7,11,15,17,21 and 31 interact with mode #13. 

The machines picked up by their participation factors in the various modes 

selected based on the first and second order terms are; # 2, 5, 6, 10, 12, 16 and 17. 

6.3.2 50-generator system stressed case 

Table 6.14 lists the coefficients and C2^pç for the modes # 31,33,11 

and 49, which were selected in Table 6.9. From the first group of entries in this 
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Table 6.13: 17-generator system coefficients for second order terms 

Mode Mode p coefficient Mode p and q coefficient 
m l^Oml P P q \ ^2mpq\  

11 8.185 3 8.603 1 3 8.315 
25 9.322 1 25 8.288 

5 6.838 3 11.883 1 3 8.853 
3 27 6.857 

13 12.719 1 23.173 1 31 20.689 
3 19.126 3 31 14.153 
7 13.415 11 31 14.376 

17 17.511 15 21 12.707 
31 17.059 

table, we see that mode 31 interacts with modes 37,41,43,45,47,49 and 51. Most of 

these modes are being selected in Table 6.9 (i.e., by considering only the first order 

terms). The machines picked up by the various modes selected based on the first 

and second order terms are all the machines appearing in the UEP, except machine 

# 15. However, machine # 15 is located in the same plant as the Bruce machines 

# 9 and 25, thus it will be selected when the Bruce machines are chosen. Thus, the 

results of the inclusion of the second order terms indicate the interactions of the 

various modes and confirm the inter-area mode phenomenon or the complex MOD 

for the above cases. 
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Table 6.14: 50-generator system coefficients for second order terms 

Mode Mode p coefficient Mode p and q coefficient 
m l'-Om 1 P l'-lmpl P q |<^2mpg 1 

31 11.138 43 12.659 37 41 16.298 
41 43 13.610 
43 45 18.546 
43 47 10.646 
43 49 12.917 
45 49 10.415 
49 51 10.997 

33 11.086 31 9.391 5 35 9.329 
35 10.834 5 53 13.035 
37 13.045 15 35 12.068 
41 19.990 15 63 14.256 
43 10.500 23 41 16.385 
53 26.009 31 55 18.563 
55 11.782 31 77 15.344 
63 16.137 31 81 11.325 
75 22.936 35 63 24.992 
77 9.109 35 75 11.335 

11 15.328 37 55 14.622 
49 4.511 41 4.042 41 53 5.284 

43 53 5.687 
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7 CONCLUSIONS 

Incorporation of the nonlinear load models in the TEF method involved the 

following four phases: 

1. Accounting for the load behavior in the SEP and UEP solutions. 

2. Determining the conditions at fault clearing and evaluating the MOD after 

incorporating the effects of the nonlinear loads. 

3. Modifying the energy function to account for the nonlinear loads. 

4. Validating and verifying the results of the nonlinear load incorporation. 

The technique developed in Chapter 3 was tested on two test systems, which 

included the 4-generator WSCC system and the 17-generator reduced Iowa system. 

This technique was tested for different load compositions, different fault locations 

and different fault clearing times. 

From the results presented in Chapter 4, the following conclusions can be 

drawn: 

1. The proposed technique provides results which compare favorably with time 

simulation results. 

2. The technique is generalized and can deal with any desired load composition. 
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The application of the modal analysis theory in identification of the inter-area 

mode possibility involved the following five phases: 

1. Setting up the system equations for the free response characteristics. 

2. Computation of the excitation or the "dominance measures" of the modes and 

thereafter selecting the dominant modes. 

3. Applying the theory of including the second order terms to confirm the selec­

tion of modes picked up by the "dominance measures". 

4. Comparing the results with those obtained by time domain simulations. 

5. Indicating that the inter-area mode phenomenon, if present, results from the 

interaction among various modes. 

The technique developed in Chapter 5 was tested on three test networks, which 

included the 17-generator reduced Iowa system, the 50-generator Ontario Hydro 

system and the 126-generator SRP system. This technique was tested for different 

fault configurations, different system loading conditions and different fault clearing 

times. 

From the results presented in Chapter 6, the following conclusions can be 

drawn: 

1. The theory of modal analysis can be applied to study the interaction of various 

modes and thus to indicate the inter-area mode possibility. 

2. The technique accounts for the conditions at fault clearing through the initial 

vector X(0). 
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3. The technique accounts for the system configuration and loading via the post 

disturbance admittance matrices, which are used in computing the plant ma­

trix A. 

4. The technique gives a reasonably correct indication of the inter-area mode 

phenomenon by indicating the interactions of the various modes. 

5. For the unstressed system (simple MOD cases), it is sufficient to consider the 

Taylor series expansion of the nonlinear equations upto the first order terms 

only. 

6. For the stressed systems, where the system nonlinearity may become domi­

nant, the second order terms in the series expansion for the state variables, 

also need to be considered. 

7. Prelimnary results on the inclusion of the second order terms in the series 

expansion clearly indicate the interaction between the various modes, and 

detect the possibility of complex modes of oscillation. 

8. The computational burden can be very heavy, when considering the second 

order terms, for a case with a large number of generators. In dealing with such 

situations some criteria to reduce the numerical burden need to be developed. 

7.1 Suggestions for Future Research 

Based on the experience of this research work, the following developments are 

recommended. 
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1. Load characteristics should be regarded as important as other system param­

eters, and every effort should be made to determine them in a realistic way. 

Most available test information on load characteristics is on the variation of 

active load with voltage [28]. There is somewhat less information on the vari­

ation of reactive load. When it comes to the effect of frequency, the test 

information is very scanty for active load, and practically nonexistent for re­

active load. Thus, more attention should be devoted to analyzing the nature 

of the loads. 

2. Sparse network formulation, preserving the network structure, may be at­

tempted for incorporating the nonlinear load models. 

3. Expansion of the nonhnear equations to include the higher order terms (as in 

Chapter 5) may be investigated further by applying it to the 126-generator 

system, in order to get additional information about the interaction of the 

various modes in stressed systems. 

4. As mentioned before, the computational burden can be very heavy, when con­

sidering the second order terms, for a case with a large number of generators. 

To deal with such situations, it is proposed that the generators which are not 

of interest be eliminated, thus reducing the size and hence the computational 

burden. This proposal needs to be investigated and tested. 

5. The inter-area mode of system separation is found to be a slowly developing 

transient. The effect of very fast exciters may be included to obtain more 

accurate computations of stability limits in the operation of stressed systems. 



www.manaraa.com

83 

8 BIBLIOGRAPHY 

Pai, M. A. Power System Stability Analysis by the Direct Method of 
Lyapunov. North-Holland Systems and Control Series. Vol. 3. New York: 
North-Holland, 1981. 

"DIRECT - Fast Stability Program Using Direct Solution Techniques." 
EPRI Technical Brief, RP2206, Sheet No. 87, 1987. 

Kimbark, E. W. Power System Stability.  Vol. I. New York: John Wiley & 
Sons, Inc., 1948. 

Criteria of Stability of Electric Power Systems. A report published by the all 
Union Institute of Scientific and Technological Information and the Academy 
of Sciences of the USSR Electric Technology and Electric Power Series, 
Moscow, USSR, 1971. 

Magnusson, P. C. "Transient Energy Method of Calculating Stability." 
AIEE Trans. 66 (1947): 747-755. 

Aylett, P. D. "The Energy Integral Criterion of Transient Stability Limits of 
Power Systems." Proceedings of the lEE 105(C) (1958): 527-536. 

Gless, G. E. "Direct Method of Lyapunov Applied to Transient Power 
System Stability." IEEE Trans. PAS-85 (February 1966): 159-168. 

El-Abiad, A. H. and K. Nagappan. "Transient Stability Regions of 
Multimachine Power Systems." IEEE Trans. PAS-85 (February 1966): 
169-179. 

Gupta, C. L. and A. H. El-Abiad. "Determination of the Closest Unstable 
Equilibrium State for Lyapunov Methods in Transient Stability Studies." 
IEEE Trans. PAS-94 (September 1976): 1699-1712. 

Fouad, A. A. "Stability Theory - Criteria for Transient Stability." Proc. 
Conference on Systems Engineering for Power: Status and Prospects,  
Henniker, NH, 1975, Publication No. CONF-750867: 421-450. 



www.manaraa.com

84 

[11] Ribbens-Pavella, M. "Transient Stability of Multimachine Power Systems by 
Lyapunov's Direct Method." Proc. of Seminar on Stability of Large Scale 
Power Systems at University of Liege, Liege, Belgium, 1972. 

[12] Lugtu, R. L. and A. A. Fouad. "Transient Stability Analysis of Power 
Systems Using Lyapunov's Second Method." IEEE Winter Meeting, Paper 
No. C72145-6, New York, February 1972. 

[13] Tavora, C. J. and Smith, D. J. M. "Characterization of Equilibrium and 
Stability in Power Systems." IEEE Trans. PAS-91 (May 1972): 1127-1130. 

[14] Athay, T., R. Pod more and S. Virmani. "A Practical Method for Direct 
Analysis of Transient Stability." IEEE Trans. PAS-98 (1979): 573:584. 

[15] Athay, T., V. Sherket, R. Podmore, S. Virmani and C. Puech. "Transient 
Energy Stability Analysis." Proc. Conference on Systems Engineering for 
Power: Emergency Operating State Control, Davos, Switzerland, 1979. U.S. 
Dept. of Energy PubUcation No. CONF-790904-PL, Section IV. 

[16] Kakimoto, N., Ohsawa, Y. and Hayashi, M. "Transient Stability Analysis of 
Electric Power Systems via Lur'e Type Lyapunov Function." Proceedings of 
lEE Japan 98 (May/June 1978): 63-78. 

[17] Fouad, A. A. and S. E. Stanton. "Transient Stability Analysis of a 
Multimachine Power System. Part I: Investigation of System Trajectory; and 
Part II: Critical Transient Energy." IEEE Trans. PAS-100 (August 
1981):3408-3424. 

[18] Fouad, A. A., K. C. Kruempel, K. R. C. Mamandur, S. E. Stanton, M. A. Pai 
and V. Vittal. "Transient Stability Margin as a Tool for Dynamic Security 
Assessment." EPRI Report EL-1755, March 1981. 

[19] Fouad, A. A., V. Vittal and T. Oh. "Critical Energy for Transient Stability 
Assessment of a Multimachine Power System." IEEE Trans. PAS-103 (1984): 
2199-2206. 

[20] Chiang, H. D., F. F. Wu and P. P. Varaiya. "Foundations of Direct Methods 
for Power System Transient Stability Analysis." IEEE Trans, on Circuits 
and Systems, CAS-34, February 1987: 160-173. 

[21] Vittal, V. "Power System Transient Stability Using the Critical Energy of 
Individual Machines." Ph.D. Dissertation, Iowa State University, Ames, 
Iowa, 1982. 



www.manaraa.com

85 

[22] Michel, A. N., A. A. Fouad and V. Vittal. "Power System Transient Stability 
Using Individual Machine Energy Functions." IEEE Trans. PAS-30 (May 
1983): 266-276. 

[23] Rajagopal, S. "Application of the Transient energy Function Method to 
Stressed Large-Scale Power Systems." Ph.D. Dissertation, Iowa State 
University, Ames, Iowa, 1987. 

[24] Carvalho, V. F., M. A. El-Kady, E. Vaahedi, P. Kundur, C. K. Tang, G. 
Rogers, J. Libaque, D. Wong, A. A. Fouad, V. Vittal and S. Rajagopal. 
"Direct Analysis of Transient Stability for Large Power Systems." EPRI 
Report EL-4980, December 1986. 

[25] Nodehi, K. "Incorporating the Effect of Exciter in the Transient Energy 
Function Method" Ph.D. Dissertation, Iowa State University, Ames, Iowa, 

. 1987. 

[26] Fouad, A. A., V. Vittal, Y. X. Ni, H. R. Pota, K. Nodehi and T. K. Oh. 
"Extending Applications of the Transient Energy Function Method." EPRI 
Report No. EL-5215, September, 1987. 

[27] Oh, T. "Correlation of the Transient Energy Margin to Out-of-Step 
impedance relay operation." Ph.D. Dissertation, Iowa State University, 
Ames, Iowa, 1986. 

[28] Concordia, C. "Representation of Loads" IEEE Power Engineering Society 
1975 Winter Meeting Paper, Symposium on Adequacy and Philosophy of 
Modeling: Dynamic System Performance, 1975. 

[29] Athay, T. and D. I. Sun. "An improved Energy Function for Transient 
Stability Analysis." Proc. of IEEE International Symposium on Circuits and 
Systems, Chicago, April 1981. 

[30] Pai, M. A., K. R. Padiyar and C. Radhakrishna. "Transient Stability 
Analysis of Multimachine AC/DC Power Systems Via Energy Function 
Method." IEEE Trans, on Power Apparatus and Systems, PAS-100, 
December 1981: 5027-5035. 

[31] S as try, H. S. Y. "Application of Topological Energy Functions for the Direct 
Stability Evaluation of Power Systems." Ph.D. Dissertation, IIT Kanpur, 
India, May 1984. 



www.manaraa.com

86 

[32] Anderson, P. M. and Fouad, A. A. Power System Control and Stability.  Vol. 
1. Ames, Iowa: The Iowa State University Press, 1977. 

[33] Lightfoot, S. R., J. D. Whitaker and D. L. Brown. "EPRI Transient-Midterm 
Stability Program Support Software Technical Guide." EPRI Report EL-600, 
June 1979. 

[34] Tinney, W. F. and Powell, W. L. "The REI Approach to Power Network 
Equivalent." Proceedings of the 1977 PICA, pp. 314-320, Toronto, Canada, 
May 1977. 

[35] Porter, B. and Crossley, R. Modal Control Theory and Applications. 
London, UK: Taylor and Francis Ltd., 1972. 

[36] Verghese, G. C., I. J. Perez-Arriaga, F. C. Schweppe and K. W-K. Tsai. 
"Selective Modal Analysis in Power Systems." EPRI Report EL-2830, 
January 1983. 

[37] Kailath, T., Linear Systems. Englewood Cliffs. N.J.: Prentice-Hall, Inc., 
1980. 

[38] Zadeh, L. A. and Desoer, C. A. Linear System Theory the State Space 
Approach. New York: McGraw-Hill Book Company, Inc., 1963. 

[39] Litz, L. "Order Reduction of Linear State Space Models via Optimal 
Approximation of the Nondominant Modes." Large Scale Systems 2. 
Amsterdam: North-Holland Publishing Company, 1981, pp 171-174. 

[40] Berggren, B. "Transient Stability Behavior in a Stressed Power System." 
M.S. Thesis, Iowa State University, Ames, Iowa, 1988. 

[41] Vittal v., S. Rajagopal, A. A. Fouad, M. A. El-Kady, E. Vaahedi and V. 
Carvalho. "Transient Stability Analysis of Stressed Power Systems Using the 
Energy Function Model." Proc. 1987 Power Industry Computer Applications 
Conference, May 1987: 253-258. 



www.manaraa.com

87 

9 ACKNOWLEDGMENTS 

I am very grateful to my major professor Dr. V. Vittal for giving his constant 

attention and time to this research work. His deep interest and encouragement were 

of immense help in pursuing this research. 

I would especially like to thank Dr. A. A. Fouad for his invaluable guidance and 

encouragement. His constant reminder to view the system from a physical aspect 

was of great help in formulating and solving this research problem. 

I am thankful to Dr. K. C. Kruempel for exposing me to the special computer 

programming skills required for power system analysis and for helping me with the 

various computer programs. Special thanks are extended to Dr. T. Georgiou and 

Dr. R. K. Miller for their enthusiastic participation in my graduate committee. 

I would like to thank my parents for their constant encouragement and moral 

support throughout my graduate program. 

I take this opportunity to thank my fellow graduate students for their friendship 

and moral support, and for the good times we shared together. Thanks are also 

extended to the secretaries of the Electrical Engineering and Computer Engineering 

department. 

I am indebted to the Electrical Engineering and Computer Engineering depart­

ment at Iowa State University for their financial assistance. 



www.manaraa.com

88 

10 APPENDIX 

A Newton-Raphson approach developed in [33] is used to iteratively obtain the 

solutions to equation (3.2). 

The equation (3.2) is represented in the rectangular form as 

V (10.1) 

where 

I — * sTt h = H + idv 

Y^j = GI j  + jl  

Vj — e^' + i — 1,2,..., n.. 

Y^j — + jBj^j,  i , j  — 1,2,. . .  ,n 

Expanding the above equation in terms of the rectangular coordinates, we get 

C ;  +  { G i j  +  j B i j )  ( e j  +  j f j )  i  =  l , 2 , . . . , n  (10.2) 

J — 1 
or (10.3) 

= E -  B i j f j )  
i=i 

H  + ^ h j f j )  (10.4) 

The unknown vector x = [ej, 62,..., e^, /i,/2Î • • • i/n]^- We want solutions to 
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the équations 

E i x )  =  y  (10.5). 

where 

y  =  [ d i , d 2 , . . . . , d n ,  C 2 , C 2 , . . .  , c n ]  

n 

i=i 
n 

n 

= Z ((^(i-7%)^; - ̂ (i-T%)/; j ' % = ;% + 1,..., 2n (10.6) 
;=i 

The iterative solution is set up as 

y  -  F { x )  =  J s .  (10.7) 

where 

J = 

G In 

Gnn 

-^In 

Bii BI2 ••• -Sin ^hl ^12 • 

Bjil  •®n2 • • • Bnn ^nl ^n2 

^hl (^12 ••• ^hn ~Bii -BI2 . 

. ^'n2 ••• -Bn2 • 

The updated is obtained, the new injected currents are 

calculated using equation (3.3), and the solution is repeated. The procedure is 

continued until two successive values for each differ only by a specified tolerance. 

-B nn 
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